近日,由劳伦斯-利弗莫尔国家实验室(LLNL,美国著名国家实验室之一)、奥斯汀大学和通用原子公司的科学家组成了一个研究团队,他们致力于打破上述难题。具体来说,该团队使用短脉冲、高对比度的激光器对锥体和平面目标进行了热电子生产实验的测量。
据悉,锥形几何体是一个复合抛物面聚光器(CPC),旨在将激光聚焦到顶端。根据模拟结果显示,CPC将激光集中到锥形几何体的顶端,因此锥形几何体显示出比平面更高的热电子温度。
该研究项目的负责人Dean Rusby(LLNL的博士后)说:"我们能够射入一个聚焦锥目标来增强高功率激光相互作用的电子束温度,这向我们揭示了CPC在这些激光条件下是如何工作的。"事实上,在这些相互作用中强化进入高能电子的耦合,对于从激光-等离子体相互作用中开发新的应用至关重要。
该项目的研究者Andrew MacPhee说:"我们看到了在100 fs千瓦级激光系统上使用CPC增强激光能量的可能性,这实在令人激动!这几乎要突破衍射限制了。并且应用于激光-空气相互作用的非成像光学技术正在重新定义可获得的共享参数空间。"
目前,虽然该研究已经取得了相当成果,但接下来将继续深挖更多可能性。研究团队将称他们未来将集中研究质子从后表面的加速以及CPCs引发的增强作用。
该项目的主要调查员Andrew Mackinnon说:"这些实验表明,微型等离子体反射靶确实能够改善了千瓦级激光器与MeV(百万电子伏特)电子的耦合,这有利于推动基于MeV射线成像等潜在应用的实现。”